97 research outputs found

    Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model

    Full text link
    A mechanism of point defect migration triggered by local depolarization fields is shown to explain some still inexplicable features of aging in acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged defect transport and electrostatic field relaxation within a two-dimensional domain configuration is treated numerically and analytically. Numerical results are given for the emerging internal bias field of about 1 kV/mm which levels off at dopant concentrations well below 1 mol%; the fact, long ago known experimentally but still not explained. For higher defect concentrations a closed solution of the model equations in the drift approximation as well as an explicit formula for the internal bias field is derived revealing the plausible time, temperature and concentration dependencies of aging. The results are compared to those due to the mechanism of orientational reordering of defect dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review

    The Demography of Massive Dark Objects in Galaxy Centres

    Get PDF
    We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio Upsilon, and a central massive dark object (MDO) of arbitrary mass M_bh. They provide acceptable fits to 32 of the galaxies for some value of M_bh and Upsilon; the four galaxies that cannot be fit have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fit galaxies are consistent with the fundamental plane correlation Upsilon \propto L^0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M_bh ~ 0.006 M_bulge = 0.006 Upsilon L. Five of the six galaxies consistent with M_bh=0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M_bh. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f ~0.97 of galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M_bh/M_bulge) of mean -2.27 and width ~0.07.Comment: 28 pages including 13 figures and 4 tables. Submitted to A

    A Raman Study of Morphotropic Phase Boundary in PbZr1-xTixO3 at low temperatures

    Full text link
    Raman spectra of PbZr1-xTixO3 ceramics with titanium concentration varying between 0.40 and 0.60 were measured at 7 K. By observing the concentration-frequency dependence of vibrational modes, we identified the boundaries among rhombohedral, monoclinic, and tetragonal ferroelectric phases. The analysis of the spectra was made in the view of theory group analysis making possible the assignment of some modes for the monoclinic phase.Comment: 5 pages, 4 figure

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2) : 12-month results from a randomised, double-masked, phase 3 trial

    Get PDF
    Geographic atrophy is an advanced form of dry age-related macular degeneration that can lead to irreversible vision loss and high burden of disease. We aimed to assess efficacy and safety of avacincaptad pegol 2 mg in reducing geographic atrophy lesion growth.GATHER2 is a randomised, double-masked, sham-controlled, 24-month, phase 3 trial across 205 retina clinics, research hospitals, and academic institutions globally. To be eligible, patients had to be aged 50 years or older with non-centrepoint-involving geographic atrophy and best corrected visual acuity between 20/25 and 20/320 in the study eye. Eligible patients were randomly assigned (1:1) to monthly avacincaptad pegol 2 mg administered as a 100 μL intravitreal injection or sham for the first 12 months. Randomisation was performed using an interactive response technology system with stratification by factors known to be of prognostic importance in age-related macular degeneration. Patients, investigators, study centre staff, sponsor personnel, and data analysts were masked to treatment allocation. The primary endpoint was geographic atrophy lesion size measured by fundus autofluorescence at baseline, month 6, and month 12. Efficacy and safety analyses were done in the modified intention-to-treat and safety populations, respectively. This trial is registered with ClinicalTrials.gov, NCT04435366.Between June 22, 2020, and July 23, 2021, 1422 patients were screened for eligibility, of whom 448 were enrolled and randomly assigned to avacincaptad pegol 2 mg (n=225) or sham (n=223). One patient in the sham group did not receive study treatment and was excluded from analyses. There were 154 (68%) female patients and 71 (32%) male patients in the avacincaptad pegol 2 mg group, and 156 (70%) female patients and 66 (30%) male patients in the sham group. From baseline to month 12, the mean rate of square-root-transformed geographic atrophy area growth was 0·336 mm/year (SE 0·032) with avacincaptad pegol 2 mg and 0·392 mm/year (0·033) with sham, a difference in growth of 0·056 mm/year (95% CI 0·016-0·096; p=0·0064), representing a 14% difference between the avacincaptad pegol 2 mg group and the sham group. Ocular treatment-emergent adverse events in the study eye occurred in 110 (49%) patients in the avacincaptad pegol 2 mg group and 83 (37%) in the sham group. There were no endophthalmitis, intraocular inflammation, or ischaemic optic neuropathy events over 12 months. To month 12, macular neovascularisation in the study eye occurred in 15 (7%) patients in the avacincaptad pegol 2 mg group and nine (4%) in the sham group, with exudative macular neovascularisation occurring in 11 (5%) in the avacincaptad pegol 2 mg group and seven (3%) in the sham group.Monthly avacincaptad pegol 2 mg was well tolerated and showed significantly slower geographic atrophy growth over 12 months than sham treatment, suggesting that avacincaptad pegol might slow disease progression and potentially change the trajectory of disease for patients with geographic atrophy.Iveric Bio, An Astellas Company

    Perturbative Duality in the Resonance Spin Structure Functions

    Full text link
    We investigate the relations between the spin structure functions in the scaling and resonance regions. We examine the possible duality between the two, and draw inferences for the behavior of the asymmetry A_1 at large x. Finally, we point out the importance of additional polarized structure function data in the resonance region in terms of testing the hysteresis of perturbative physics.Comment: 4 pages, revtex, no figure

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore